調節閥又稱控制閥,是執行器的主要類型,通過接受調節控制單元輸出的控制信號,借助動力操作去改變流體流量。調節閥一般由執行機構和閥門組成。如果按其所配執行機構使用的動力,調節閥可以分為氣動、電動、液動三種,即以壓縮空氣為動力源的氣動調節閥,以電為動力源的電動調節閥,以液體介質(如油等)壓力為動力的電液動調節閥,另外,按其功能和特性分,還有電磁閥、電子式、智能式、現場總線型調節閥等。調節閥的產品類型很多,結構也多種多樣,而且還在不斷更新和變化。一般來說閥是通用的,既可以與氣動執行機構匹配,也可以與電動執行機構或其他執行機構匹配。
目前國內供熱系統包括一次水系統和二次水系統,都普遍采用大流量小溫差的運行方式,實際供水溫度比設計供水溫度低10~20℃,循環水量增加20%~50%。此種運行狀態使循環水泵電耗急劇增加(50%以上)、管網輸送能力嚴重下降、熱力站內換熱設備數量增加。其原因除受熱源的限制不能提高供水溫度外,主要是因為管網缺乏必要的控制設備,系統存在水力失調的問題,為保證不利用戶供熱而采取的措施。因此,應該在供熱系統增加控制手段解決水力失調工況后,將供水溫度提高到設計溫度或接近設計溫度,以提高供熱系統的輸送效率、節約能源,并為用戶擴展打下良好基礎。供熱系統的一次系統因通過每個熱力站的水量得不到有效控制而造成的水力失調和能源浪費現象很嚴重。因此應在熱力站入口裝設流量控制設備以解決一次水系統的水力失調問題。對于定流量質調節運行方式應裝設自力式流量限制器,對于變流量調節的系統應裝壓差控制器或電動調節閥。為了提高熱力站的自動化控制水平,越來越多地在熱力站一次管網上采用電動調節閥進行供熱系統的流量調節。
由于不同換熱站所處系統位置不同,對于整個系統來說,每個熱力站一級管道進出口的壓差也是有區別的,靠近熱源前端A點的管道進出口的壓差相對較大,安裝的調節閥閥端壓差Δpa也較大;系統末端B點的管道進出口壓差就偏小,安裝的調節閥閥端壓差Δpb也小,管道內的不同壓差對電動調節閥的選型有很大影響,因此初步選型確定電動調節閥型號后,應對整個系統進行相應的水力計算,尤其應對熱力站一次管網進出口處的壓差進行詳細計算,以校核該選定電動調節閥的閥端壓差。在電動調節閥的選型樣本中,電動調節閥有一個出廠時設定的*閥端壓差值,要將計算出的一次管網進出口處壓差與閥門推薦壓差進行對比,確保不超過閥門的zui大關閉壓差,以選擇的電動調節閥。電動調節閥有一個優點就是針對不同的壓差條件可以選擇不同驅動器來滿足zui大的管網壓差要求。
在系統前端,熱力站一次管網進出口壓差較大時,為了減小該處的進出口壓差,需采取一些相應的技術手段,比如安裝壓差控制器或節流孔板等設備,也可采用串聯平衡閥的方法來減小電動調節閥的壓差,具體選型方法如前所述;在系統末端,由于前端一次管網管段過長,阻力消耗過大,且存在前端熱力站流量分配不均,壓降過大,造成一次網末端壓差太小,也可考慮在適當位置增加中繼泵站,以增加后端管道內流體壓差,滿足調節閥的壓差需求。以上各種措施需要根據不同情況進行計算后裝設。通過這些技術手段就可以避免由于近端電動調節閥失調,流量超量;系統末端熱用戶的供回水資用壓頭過小(不再依設計水壓圖運行),即使調節閥全開,也達不到設計流量,會產生冷熱不均的現象。正確選擇、安裝電動調節閥,對于整個一次網系統的安全運行、調節都能起到較好的作用。另外,為了節約投資,在系統zui末端的換熱站可以不設置電動調節閥,只需將前端的調節閥進行合理設置和調節,給末端留有足夠的壓頭和流量即可滿足設計和使用要求。
電動調節閥在實際應用當中還存在著諸多的不確定因素和不可控環節,制約著調節的精度,尤其是運行初期,整個系統還未穩定,不能著急調節電動調節閥,需等整體的流量、溫度穩定后,注意進行調節并觀測效果,要先根據經驗進行粗調,再由系統前端至后端逐一微調,直至各換熱站流量分配相對均勻、平衡。
全年征稿/資訊合作
聯系郵箱:[email protected]
免責聲明
- 凡本網注明"來源:智能制造網"的所有作品,版權均屬于智能制造網,轉載請必須注明智能制造網,http://www.lfljgfsj.com。違反者本網將追究相關法律責任。
- 企業發布的公司新聞、技術文章、資料下載等內容,如涉及侵權、違規遭投訴的,一律由發布企業自行承擔責任,本網有權刪除內容并追溯責任。
- 本網轉載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點或證實其內容的真實性,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品來源,并自負版權等法律責任。
- 如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
2025第十一屆中國國際機電產品交易會 暨先進制造業博覽會
展會城市:合肥市展會時間:2025-09-20