?
方法由于處理成本高和操作運行條件較高,而較少適應。生化法(1)厭氧發酵法:紡織印染廢水如單獨采用好氧生化處理或附加混凝處理動力消耗大,且許多廢水基質難以被分解和脫色,實踐證明,輔以厭氧技術處理該類廢水,效果良好,厭氧發酵工藝又分為常規厭氧發酵、高效厭氧發酵、厭氧接觸法、厭氧過濾法、上流式厭氧污泥床(UASB)、改進型厭氧發酵裝置(UASB+AF)、厭氧折流式工藝、厭氧流化床或膨脹床工藝、下流式厭氧過濾(固定膜)反應器等幾種工藝。(2)生物膜法:又分生物濾池、生物轉盤、生物接觸氧化法,其中后兩種方法在國內的印染
膠體和微小懸浮狀態的有機和無機物質,減小了生化處理的負荷。由于廢水偏酸性,投加Ca(OH)2一方面可調節廢水的pH值,另一方面Ca2+也和茶多酚反應生成難溶化合物,進一步減少水中茶多酚的含量,為后續生化處理的順利進行提供了條
件。茶多酚在堿性條件下很容易氧化變色 ,控制pH值在6~7時的試驗結果見圖2、3。由圖2、3可看出,投加PAC和Al2(SO4)3對茶多酚有較好的去除效果。PAC的佳投量為250mgL,對COD的去除率為29%左右,對茶多酚的去除率為85%左右。Al2(SO4)3的佳投量為500mgL,對COD的去除率為35%左右,對茶多酚的去除率為86%左右米TiO2進水沖擊時也具有一定指導意義, 即如果及時采取處理措施, 納米TiO2進水沖擊負荷不會對系統穩定性產生明顯影響.(a)產酸階段; (b)產甲烷階段圖 2 納米TiO2短期暴露對厭氧顆粒污泥產酸階段及產甲烷階段的影響盡管上述試驗證明, 納米TiO2對產酸階段及產甲烷階段這兩個獨立過程沒有明顯影響, 但實際厭氧消化過程中上述兩階段是相互融合彼此協調的.因此, 通過累積產烷量隨時間的變化情況考察了納米TiO2對完整的厭氧消化產烷過程的影響, 結果見圖 3.可見, 無論是單獨考慮產烷過程還是厭氧消化完整過程, 納米TiO2對終產烷量都沒有明顯影響, 分析.2 結果與討論 2.1 水力停留時間(HRT)對活性炭填料吸附的影響吸附實驗得出結果, 在水力停留時間為6 h時, 各階段吸附基本達到平衡, 利用活性炭吸附時, 常用Freundlich公式來表示平衡關系, 繪制吸附等溫線如圖 2所示.依據Freundlich公式lnQe=lnKf+lnce得到如圖 2所示的各污染物吸附等溫線. NH4+-N、TP、高錳酸鹽指數擬合所得直線R2均大于0.9, 1n分別為0.451 7、0.589、0.371 6. Freundlich模型參數1n與吸附作用力大小有關, 1n越大作用力越小, 吸附強度較弱, 表示條件不利于吸附[17].一般認為1n的值在0~1之間, 其值的大小表示濃度對吸附影厭氧反應器運行穩定性的累積效應及其在反應器內的歸趨, 結合厭氧顆粒污泥微生物種群結構的變化, 以揭示納米TiO2對厭氧顆粒污泥微生物的抑制機制, 以期為應對厭氧污水處理體系中納米TiO2的生態風險提供理論支持和參考依據.1 材料與方法 1.1 厭氧顆粒污泥及納米TiO2的特性試驗所用厭氧顆粒污泥來自于處理大豆蛋白廢水的EGSB反應器, 并在小試ASBR反應器中采用模擬廢水馴化一個月, 此時污泥大比產甲烷活性為(1.08±0.03)g?(g?d)-1.經分析污泥中Ti的背景值(以VSS計, 下同)為(1.7±0.3)mg?g-1.其中, 模擬廢水中的主要成分有:葡萄糖(7 000 mg?L-吉林那里產中心血站污水處理設備工廠曲線圖 (a.升流區, b.降流區)和流化示意圖(c)流化床在相同進水流量工況下, 曝氣強度是影響填料濃度變化的主要因素;在相同曝氣強度工況下, 進水流量是影響填料濃度變化的主要因素.在多數工況下, 流化床中部區域為稀相區域;曝氣強度和進水流量的匹配可使流化床的填料濃度達到高值;在相同工況下升流區的填料濃度均大于降流區的濃度;進水流量和曝氣強度為200 L?h-1、0.65 m3?h-1工況下的填料濃度與50 L?h-1、1.05 m3?h-1工況下的填料濃度較接近.可見, 進水流量的增加加速了降流區填料的流化, 進而加速整個流化床的填料流化;且不同進水流量和曝。考慮